Riman həndəsəsi (elliptik həndəsə) — qeyri-Evklid həndəsələrindən biri; Evklid həndəsəsinin aksiomlarından fərqli aksiomlara əsaslanan həndəsi nəzəriyyə. Üçölçülü Riman həndəsəsinin əsas obyektləri (elementləri) nöqtə, düz xətt və müstəvi, əsas anlayışları isə aidlik (nöqtənin düz xəttə və müstəviyə aidliyi), tərtib (məsələn, düz xətt üzərində nöqtələrin tərtibi və ya müstəvidə götürülmüş nöqtədən çıxan düz xətlərin tərtibi) və fiqurların konqruyentliyidir.
Riman həndəsəsi Bernhard Rimanın "Ueber die Hypothesen, welche der Geometrie zu Grunde liegen"[1] (Həndəsənin əsaslandığı fərziyyələr haqqında) adlı ilk mühazirəsində ifadə etdiyi nəzəri baxışların əsasında formalaşmışdır. Riman həndəsəsi R3 fəzasındakı səthlərin diferensial həndəsəsinin çox geniş və mücərrəd bir ümumiləşməsidir. Riman həndəsəsinin inkişafı səthlərin həndəsəsi və onların geodezik əyrilərin (geodeziklərin) davranışı ilə bağlı müxtəlif nəticələrin sintezi, daha yüksək ölçülü diferensiallanan çoxobrazlıların tədqiqində tətbiq oluna bilən üsulların meydana çıxmasıyla nəticələndi. O, Eynşteynin ümumi nisbilik nəzəriyyəsinin formalaşmasına imkan verməklə yanaşı qrup nəzəriyyəsi və təqdimat nəzəriyyəsinə, eləcə də riyazi analizə dərin təsir göstərdi və cəbri və diferensial topologiyanın inkişafına təkan verdi.
Riman həndəsəsi ilk dəfə 19-cu əsrdə Bernhard Riman tərəfindən ümumiləşmiş formada irəli sürmüşdür. O, metrik xassələri nöqtədən nöqtəyə dəyişən genişhəcmli həndəsi aralıqlarla, o cümlədən qeyri-Evklid həndəsəsinin standart növləri ilə məşğul olmuşdur.
Hər bir hamar çoxobrazlı Riman metrikasını qəbul edir ki, bu da bir çox hallarda diferensial topologiya məsələlərini həll etməyə kömək edir. Həmçinin o (dörd ölçüdə) ümumi nisbilik nəzəriyyəsinin əsas obyektləri olan psevdo-Riman çoxobrazlılarının daha mürəkkəb strukturu üçün giriş səviyyəsi kimi yararlıdır. Riman həndəsəsinin digər ümumiləşdirmələrinə Finsler həndəsəsi daxildir.
Nizamlı kristallardakı qüsurların riyazi strukturu və diferensial həndəsə arasında yaxın bir analogiya var. Dislokasiyalar və disklinasiyalar burulma və əyriliklər yaradır.[2][3]
Riman həndəsəsindəki ən klassik teoremlərin bir hissəsi aşağıda verilmişdir. Seçim apararkən formulyasiyanın əhəmiyyətinə və zərifliyinə diqqət yetirilir. Nəticələrin əksəriyyətini Ceff Çiqer və Devid Ebinin klassik monoqrafiyasından tapmaq olar (aşağıya baxın).
Verilmiş düsturlar çox dəqiq və ya ən ümumi olmaqdan uzaqdır. Bu siyahı artıq əsas tərifləri bilən və bu təriflərin nə ilə bağlı olduğunu bilmək istəyənlər üçün nəzərdə tutulub.
Aşağıdakı teoremlərin hamısında fəzanın qlobal strukturu, o cümlədən çoxobrazlının topoloji tipi və ya nöqtələrin təbiəti haqqında bəzi məlumatlar əldə etmək üçün "kifayət qədər böyük" məsafələrdə fəzanın lokal xarakterli olduğunu (adətən əyrilik fərziyyəsindən istifadə etməklə tərtib edilir) qəbul edirik.
n-ölçülü tor müsbət skalyar əyriliyi olan metrikaya uymur.
Əgər kompakt n-ölçülü Riman çoxobrazlısının injeksiya radiusu π-dən kiçik deyilsə, orta skalyar əyrilik ən çoxu n(n-1) olur.
Kitablar
Məqalələr